
Chips Performance (TFLOPs) Price in 2024

AMD Ryzen™ Threadripper™ PRO 7995WX 12.16 US$ 10,000

NVIDIA Tesla A100 312 US$ 18,000

Fundamentals of CUDA C/C++  
Introduction  
CUDA is a parallel computing platform developed by NVIDIA that allows general-purpose 
computing on GPUs (GPGPU). It is widely used in the fields related to high-performance 
computing, such as machine learning and computer simulation. 

Typically, the parallelism and performance on GPUs are much higher than on CPUs. Let's look at 
the FLOPs of some latest CPU and GPU chips. With less than double prize, NVIDIA A100 offers 
nearly 26 times better performance than today's most powerful CPU.

In this article, we will discuss the basic methodology on CUDA programming.

Before You Start  
NVIDIA offers a command line tool nvidia-smi  (system management interface) to show the 

information of   the GPU installed on the computer. Don't worry if you do not have a NVIDIA GPU, 
simply turn to Google Colab for a free GPU environment. The rest of the article will be done on 
Google Colab.

After we connect to a GPU runtime on Colab, we can now run nvidia-smi  in the interactive 

environment to see the information of the GPU installed. Note that we are in a Python 
environment and !  before system commands tells the environment to run it in a Linux shell.

Great! We now have a Tesla T4 GPU! Make sure you have seen similar outputs and we will now 
move on to our next topic.
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Qualifiers Meanings

__global__ The function is executed on device, called by host.

__device__ The function is executed on device, called by device.

__host__
The function is executed on host. This is the default choice when we omit the
qualifier.

CUDA Programming Basics  
The prefix of a file in the CUDA language is .cu , and a CUDA file can be compiled along with 

C/C++/Fortran easily with the help of CMake . However, it is not today's topic and we will simply 
stop here. 

Our First CUDA Program  

Before we talk about CUDA, let's first look at a C program that we are already familiar with.

Straightforward, right? After rename the file as first.cu , we can compile it with CUDA compiler, 

just like what we usually do with a C compiler. 

nvcc  is the CUDA compiler, -o  specified the name of the output executable file, -run  executes 

the binary file right after the compilation process finishes. Now we can see the output from the 
program.

The output is expected. However, it is nothing different from what we usually do in C, since what 
we have written is exactly a C program. Now we will refactor the program so that it runs on GPU. 
In the context of CUDA programming, CPU is usually called host  and GPU device . A function that 

runs on device is called kernel function. The return value of a kernel function must be void . To 

enable some function to run on device, we must add some special qualifier before the function. 
Here we list common qualifiers and explained their meanings.

#include <stdio.h>

void printHelloWorld() {

  printf("Hello, world!\n");

}

int main() {

  printHelloWorld();

}
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!nvcc first.cu -o first -run1
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In this article, tasks are assigned by the host to the device, so we will only use the __global__  

qualifier and default qualifier (no qualifier).

To launch a kernel function (don't forget what is a kernel), we use triple angle brackets to specify 
the configuration of the kernel function. Let's look at an example. The kernel function is defined 
here,

and called here.

The configuration of the kernel will be explained later. Note that a kernel function is 
asynchronous, which is to mean that the host won't wait for the kernel function to finish. Rather, 
the host will continue to execute the codes below. Function cudaDeviceSynchronize()  let host 

wait for all the kernels to finish. Let's put it together and look at the results. The complete CUDA 
program should look at this:

Now we compile and run the program

And we get the results

which shows our program are truly running on GPU!

__global__ void printHelloWorld() {

  printf("Hello, world!\n");

}
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int main() {

  printHelloWorld<<<1, 2>>>();

}
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#include <stdio.h>

__global__ void printHelloWorld() {

  printf("Hello, world!\n");

}

int main() {

  printHelloWorld<<<1, 2>>>();

  cudaDeviceSynchronize();

}
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!nvcc first.cu -o first -run1



CUDA Thread Hierarchy  

Kernel Configuration  

In the past section, we haven't really talked about what does the parameters in the triple angle 
brackets actually denote. Let's look at the CUDA thread hierarchy.

CUDA follows a grid-block-thread hierarchy. The overall structure is called grid, which is in black 
and contains blocks. The first parameter denotes number of blocks and the second parameter 
denotes threads per block. Blocks are painted blue and threads white in the slide. So, kernel 
function performWork<<<2, 4>>>  actually says, the host assigns work to 2 blocks, with 4 threads 

each. Now you can explain why we have seen two echoes in our first CUDA program.

A thread can get its block index and thread index within the block by variables blockIdx.x  

and threadIdx.x , which are available directly in the definition of a kernel function.

Let's look at an example,

which gives the output:

#include <stdio.h>

__global__ void threadInBlock() {

  printf("Thread %d from block %d\n", threadIdx.x, blockIdx.x);

}

int main() {

  threadInBlock<<<2, 4>>>();

  cudaDeviceSynchronize();

}
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There are two more variables gridDim.x  and blockDim.x , meaning the number of blocks in a 

grid and the number of threads in a block respectively and corresponding to the two parameters 
we passed when launched the kernel function.

You might wonder why there is a .x  after each variable. The truth is that both the blocks and 

threads can be place in 3 dimensions. With the help of class dim3 , we can pass a multi-

dimensional configuration into a kernel. This trick is only for convenience in some particular 
applications, for example matrix operations, and would do nothing to the performance.

The hierarchy of the configuration above will look like this:

Now we can access these values with gridDim.x , gridDim.y , gridDim.z , blockDim.x , 

blockDim.y , blockDim.z() , blockIdx.x , blockIdx.y , blockIdx.z , threadIdx.x , 

threadIdx.y , threadIdx.z .

These values are important for many calculations, as we will discuss later with memory. 

performWork<<<dim3(2,2,1), dim3(2,2,1)>>>();1



Streaming Multiprocessors  

In the end this section, we explain streaming multiprocessors (SMs) and offer a simple rule for 
picking proper numbers for numberOfBlocks  and threadsPerBlock . 

SMs are basic units that execute tasks. As shown in the figure above, blocks are scheduled to run 
on SMs. When the number of blocks is multiple of the number of SMs, the execution will be 
efficient. Therefore, we cannot hardcode numberOfBlocks  and may  use an API to get a value for a 
particular machine instead. Usually, taking numberOfBlocks  as numberOfSMs  times , , or  

would be a good choice.

As for threadsPerBlock , it can be any integer between  and .  usually becomes a good 

choice. 

Here is an example that we call a CUDA API to get the number of SMs. The official reference for 
struct cudaDeviceProp  is here.

Then, we can create a kernel configuration like this

int deviceId;

cudaGetDevice(&deviceId);

cudaDeviceProp prop;

cudaGetDeviceProperties(&prop, deviceId);

int numberOfSMs = prop.multiProcessorCount;
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int numberOfBlocks = numberOfSMs * 32;

int threadsPerBlock = 512;

some_kernel<<<numberOfBlocks, threadsPerBlock>>>();
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CUDA Streams  

GPU tasks are scheduled in streams and the kernels in one stream is serial. Before, we didn't 
specify the stream and the kernels are executed in the default stream. Default streaming is 
blocking. That is to mean, when there is a task scheduled in the default stream, all the tasks on 
the non-default streams will be blocked, while all the other non-default streams are non-
blocking, allowing concurrent kernel execution. CUDA offers a stream class cudaStream_t  and 
they are created with cudaStreamCreate()  and destroyed with cudaStreamDestroy() . As we 

didn't mention before, a kernel configuration actually accepts 4 parameters, numberOfBlocks , 

threadsPerBlock , sharedMemoryBytes , and stream . We just left the latter 2 parameter in 

defaults before. Here is an example with concurrent streams.

In this part of program, the kernels in stream1  and stream2  will be concurrent. Since we don't 
need shared memory here, we just left them in 0. Note that although cudaStreamDestroy()  

returns immediately after calling, the streams are not actually destroyed until the kernels in the 
stream finish, so we don't need to worry about the side effect of destroying a stream.

CUDA Memory Management  
So far, we have discussed how to launch a kernel running on device. However, such kernels could 
only access memory automatically allocated. That is, local variables in kernel function definition. 
We wish to allocate memory that can be accessed by both the host and the device. CUDA offers a 
unified memory model so that we don't need to worry about memory access.

cudaStream_t stream1;

cudaStream_t stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

some_kernel<<<numberOfBlocks, threadsPerblock, 0, stream1>>>();

some_kernel<<<numberOfBlocks, threadsPerblock, 0, stream2>>>();

cudaStreamDestroy(stream1);

cudaStreamDestroy(stream2);
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Unified Memory  

Allocation and Freeing  

To allocate unified memory that can be accessed both on the device and the host, we call 
cudaMallocManaged()  function.

Thus, the integer array can be accessed both on the device and the host. To free allocated unified 
memory, we call cudaFree()  utility.

Reduce Page Faults  

When UM was initially allocated, it may not be resident on CPU or GPU. If the memory was first 
initialized by CPU then GPU, a page fault occurs. Memory will be transferred from host to device 
and slow down the tasks. Similarly, if UM was initialized on GPU and then accessed by CPU, a page 
fault occurs and memory transfer begins. The place memory is resident on depends on the last 
access. When a page fault is present, memory is transferred is small batch size. If we can predict a 
page fault, we can transfer  the corresponding memory in advance with bigger batch size to 
increase the efficiency. CUDA offers an API called cudaPrefetch  to perform such behaviors. Here 

is an example.

int N = 2<<20;

int* array;

int size = N * sizeof(int);

cudaMallocManaged(&array, size);
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cudaFree(array);1

int deviceId;

cudaGetDevice(&deviceId);

// Allocate unified memory

int numberOfSMs = prop.multiProcessorCount;

int N = 2<<20;

int* array;
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The third parameter of cudaPrefetchAsync  specifies the direction of memory transfer. When 
filled with deviceId , the memory is transferred from host to device (HtoD), while 

cudaCpuDeviceId  specifies a transfer from device to host (DtoH). Note that the variable 

cudaCpuDeviceId  can directly be accessed globally and we need no APIs to get this variable.

Index Calculation  

With unified memory, we can finally schedule some tasks on GPU. Let's look at an example. 
Suppose we have two vectors containing integers, each with length 2^22, and we want to 
accelerate vector addition with CUDA. Our number of threads might no be bigger enough to 
establish a bijection between thread indices and vector indices, so a thread must execute more 
than one addition. The convention is to define a variable stride  that equals to the total number 

of threads in a (also the only) grid, and increase the loop index by stride  each time. We assume 

the kernel configuration is 1-d and here is how we calculate index. Note that we are checking index 
boundary each time to avoid unexpected memory access.

Manual Memory Management and Streaming  

Basic Commands  

Although UM is powerful enough, we may still want to manage the memory ourselves to further 
optimize the efficiency. Here are some commands for manually managing the memory.

cudaMalloc  will allocate the memory on GPU. The memory is not accessible on CPU. 

cudaFree  frees the memory allocated on device.

cudaMallocHost  will allocate the memory on CPU just like what a normal malloc  does. The 

memory will be page locked on host. Too many page locked memory would reduce CPU 
performance.

cudaFreeHost  frees the memory allocated on host.

cudaMemcpy  copies the memory DtoH or HtoD, instead of transferring.

int size = N * sizeof(int);

cudaMallocManaged(&array, size);

// Initialize the UM on CPU, then access it on GPU

init_on_cpu(array, size);

cudaPrefetchAsync(array, size, deviceId); // Trasfer the memory from host to 

device

access_memory<<<numberOfBlocks, threadsPerBlock>>>();

cudaDeviceSynchronize();

// Free memory

cudaFree(array);
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__global__ void vectorAdd(int* a, int* b, int* res, int N) {

  int idx = blockDim.x * blockIdx.x + threadIdx.x;

  int stride = gridDim.x * blockDim.x;

  for (int i = idx; i < N; i += stride) {

    res[i] = a[i] + b[i];

  }

}
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cudaMemcpyAsync  allows asynchronously memory copying (explained later).

Let's look at an example.

Note that cudaMemcpy  first accepts the destination pointer then source pointer, unlike Linux cp  

first-source-then-destination convention. cudaMemcpyDeviceToHost  and 
cudaMemcpyHostToDevice  are two variables that can be directly and globally accessed that specify 

the direction of memory copying. 

Asynchronous Memory Copying  

In the last example, memory copy starts after kernel finishes. To optimize the process, we can start 
asynchronous (or concurrent) memory copying right after a part of kernel finishes.

An simple approach is to divide the kernel in several segments. A segment of memory copying 
starts right after a segment of kernel finishes. We will refactor the former vector addition program 
and take it as an example.

int N = 2<<20;

int size = N * sizeof(int);

int* array_device;

int* array_host;

cudaMalloc(&array_device, size);

cudaMallocHost(&array_host, size);

init_on_cpu(array_host, N);

cudaMemcpy(array_device, array_host, size, cudaMemcpyHostToDevice);

some_kernel<<<blocks, threads, 0, stream>>>();

cudaMemcpy(array_host, array_device, size, cudaMemcpyDeviceToHost);

cudaFree(array_device);

cudaFreeHost(array_host);
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// Perform vector addition in segments

  int numberOfSegments = 4;

  int segmentN = N / numberOfSegments;
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The piece of program above divides the kernel vectorAdd  in 4 segments. After one segment of 

kernel finishes, asynchronous memory copying starts. Every stream first executes the kernel then 
copying the corresponding memory to the host. Note that we must carefully handle all the indices 
here to avoid illegal memory access. After all of theses are done, the stream is destroyed (recall 
stream destruction behavior). The whole accelerated program is pasted below for your reference. 
Don't forget to destroy unused streams and free unused memories.

  int segmentSize = size / numberOfSegments;

  for (int i = 0; i < numberOfSegments; i++) {

    cudaStream_t stream;

    cudaStreamCreate(&stream);

    int offset = i * segmentN;

    vectorAdd<<<blocks, threads, 0, stream1>>>(a_device + offset, b_device + 

offset, 

                                               c_device + offset, segmentN);

    cudaMemcpyAsync(c_host + offset, c_device + offset, segmentSize, 

cudaMemcpyDeviceToHost, stream);

    cudaStreamDestroy(stream);

  }

  cudaDeviceSynchronize();
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#include <stdio.h>

__global__ void init_on_gpu(int* a, int init_val, int N) {

  int idx = blockDim.x * blockIdx.x + threadIdx.x;

  int stride = gridDim.x * blockDim.x;

  for (int i = idx; i < N; i += stride) {

    a[i] = init_val;

  }

}

__global__ void vectorAdd(int* a, int* b, int* res, int N) {

  int idx = blockDim.x * blockIdx.x + threadIdx.x;

  int stride = gridDim.x * blockDim.x;

  for (int i = idx; i < N; i += stride) {

    res[i] = a[i] + b[i];

  }

}

int verify_on_cpu(int* a, int res, int N) {

  for (int i = 0; i < N; i++) {

    if (a[i] != res) {

      return 0;

    }

  }

  return 1;

}

int main() {

  // Variable declarations

  int N = 2<<20;

  int size = N * sizeof(int);

  int* a_device;

  int* b_device;
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  int* c_device;

  int* c_host;

  cudaMalloc(&a_device, size);

  cudaMalloc(&b_device, size);

  cudaMalloc(&c_device, size);

  cudaMallocHost(&c_host, size);

  

  // Kernel configuration

  int deviceId;

  cudaGetDevice(&deviceId);

  cudaDeviceProp prop;

  cudaGetDeviceProperties(&prop, deviceId);

  int SMs = prop.multiProcessorCount;

  int blocks = SMs * 32;

  int threads = 512;

  

  // Stream creation

  cudaStream_t stream1;

  cudaStream_t stream2;

  cudaStream_t stream3;

  cudaStreamCreate(&stream1);

  cudaStreamCreate(&stream2);

  cudaStreamCreate(&stream3);

  // Initialize arrays on device

  init_on_gpu<<<blocks, threads, 0, stream1>>>(a_device, 2, N);

  init_on_gpu<<<blocks, threads, 0, stream2>>>(b_device, 3, N);

  init_on_gpu<<<blocks, threads, 0, stream3>>>(c_device, 0, N);

  cudaDeviceSynchronize();

  

  // Perform vector addition in segments

  int numberOfSegments = 4;

  int segmentN = N / numberOfSegments;

  int segmentSize = size / numberOfSegments;

  for (int i = 0; i < numberOfSegments; i++) {

    cudaStream_t stream;

    cudaStreamCreate(&stream);

    int offset = i * segmentN;

    vectorAdd<<<blocks, threads, 0, stream1>>>(a_device + offset, b_device + 

offset, c_device + offset, segmentN);

    cudaMemcpyAsync(c_host + offset, c_device + offset, segmentSize, 

cudaMemcpyDeviceToHost, stream);

    cudaStreamDestroy(stream);

  }

  cudaDeviceSynchronize();

  // Verify results

  if (verify_on_cpu(c_host, 5, N)) {

    printf("Results are correct!\n");

  } else {

    printf("Results are incorrect!\n");

  }

  // Free memories

  cudaFree(a_device);

  cudaFree(b_device);
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Error Handling  
CUDA usually does not report runtime errors, so we must detect and record them manually. CUDA 
offers a class cudaError_t  to handle errors. The return values of CUDA APIs are cudaError_t , 

allowing us to catch error directly.

This program will throw an error because  is not a valid size.

However, the return values of custom kernels are void , meaning we cannot catch error in the 

same way when launching those kernels. CUDA offers cudaGetLastError  to catch the last error 
thrown. Also, we can create a utility function to encapsulate such processes.

Therefore, we can check the errors when launching kernels.

which yields

Such error handling may help debug the CUDA program.

  cudaFree(c_device);

  cudaFreeHost(c_host);

}
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#include <stdio.h>

int main() {

  int* array;

  int size = -1;

  cudaError_t err;

  err = cudaMallocManaged(&array, size);

  if (err != cudaSuccess) {

  fprintf(stderr, "Error: %s\n", cudaGetErrorString(err));

  }

}
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Error: out of memory1

inline void checkCudaError() {

  cudaError_t err;

  err = cudaGetLastError();

  if (err != cudaSuccess) {

    fprintf(stderr, "Error: %s\n", cudaGetErrorString(err));

    assert(err == cudaSuccess);

  }

}
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some_kernel<<<-1, -1>>>();

checkCudaError();
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Error: invalid configuration argument1
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Performance Profiling  
NVIDIA Nsight Systems command line tool (nsys) is a command line profiler that will gather 
following information:

Profile configuration details

Report file(s) generation details

CUDA API Statistics

CUDA Kernel Statistics

CUDA Memory Operation Statistics (time and size)

OS Runtime API Statistics

To install nsys  in Colab, run the following commands:

Then, we can profile the running information of our CUDA program. Here we take vector addition 
as an example. profile  means  we want to profile the executable and --stats=true  tells nsys  

to print all the information.

A part of printed information is pasted below:

Here we can trace the running time of kernels and the memory behavior. You can compare the 
results of different numberOfBlocks  and see what kind of memcpy  page faults will bring about.

!wget 

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/nsi

ght-systems-2023.2.3_2023.2.3.1001-1_amd64.deb

!apt update

!apt install ./nsight-systems-2023.2.3_2023.2.3.1001-1_amd64.deb

!apt --fix-broken install
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!nsys profile --stats=true vector-add1
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Final Exercise  
 An n-body simulator predicts the individual motions of a group of objects interacting with each 
other gravitationally. Below is a simple, though working, n-body simulator for bodies moving 
through 3 dimensional space.

In its current CPU-only form, this application takes about 5 seconds to run on 4096 particles, and 
20 minutes to run on 65536 particles. Your task is to GPU accelerate the program, retaining the 
correctness of the simulation.

Considerations to Guide Your Work  

Here are some things to consider before beginning your work:

Especially for your first refactors, the logic of the application, the bodyForce  function in 

particular, can and should remain largely unchanged: focus on accelerating it as easily as 
possible.

The code base contains a for-loop inside main  for integrating the interbody forces calculated 

by bodyForce  into the positions of the bodies in the system. This integration both needs to 
occur after bodyForce  runs, and, needs to complete before the next call to bodyForce . Keep 

this in mind when choosing how and where to parallelize.

Use a profile driven and iterative approach.

You are not required to add error handling to your code, but you might find it helpful, as you 
are responsible for your code working correctly.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "timer.h"

#include "files.h"

#define SOFTENING 1e-9f

/*

 * Each body contains x, y, and z coordinate positions,

 * as well as velocities in the x, y, and z directions.

 */

typedef struct { float x, y, z, vx, vy, vz; } Body;

/*

 * Calculate the gravitational impact of all bodies in the system

 * on all others.

 */

void bodyForce(Body *p, float dt, int n) {

  for (int i = 0; i < n; ++i) {

    float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;

    for (int j = 0; j < n; j++) {

      float dx = p[j].x - p[i].x;

      float dy = p[j].y - p[i].y;

      float dz = p[j].z - p[i].z;
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      float distSqr = dx*dx + dy*dy + dz*dz + SOFTENING;

      float invDist = rsqrtf(distSqr);

      float invDist3 = invDist * invDist * invDist;

      Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;

    }

    p[i].vx += dt*Fx; p[i].vy += dt*Fy; p[i].vz += dt*Fz;

  }

}

int main(const int argc, const char** argv) {

  // The assessment will test against both 2<11 and 2<15.

  // Feel free to pass the command line argument 15 when you generate 

./nbody report files

  int nBodies = 2<<11;

  if (argc > 1) nBodies = 2<<atoi(argv[1]);

  // The assessment will pass hidden initialized values to check for 

correctness.

  // You should not make changes to these files, or else the assessment 

will not work.

  const char * initialized_values;

  const char * solution_values;

  if (nBodies == 2<<11) {

    initialized_values = "files/initialized_4096";

    solution_values = "files/solution_4096";

  } else { // nBodies == 2<<15

    initialized_values = "files/initialized_65536";

    solution_values = "files/solution_65536";

  }

  if (argc > 2) initialized_values = argv[2];

  if (argc > 3) solution_values = argv[3];

  const float dt = 0.01f; // Time step

  const int nIters = 10;  // Simulation iterations

  int bytes = nBodies * sizeof(Body);

  float *buf;

  buf = (float *)malloc(bytes);

  Body *p = (Body*)buf;

  read_values_from_file(initialized_values, buf, bytes);

  double totalTime = 0.0;

  /*

   * This simulation will run for 10 cycles of time, calculating 

gravitational

   * interaction amongst bodies, and adjusting their positions to reflect.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80



 

   */

  for (int iter = 0; iter < nIters; iter++) {

    StartTimer();

  /*

   * You will likely wish to refactor the work being done in `bodyForce`,

   * and potentially the work to integrate the positions.

   */

    bodyForce(p, dt, nBodies); // compute interbody forces

  /*

   * This position integration cannot occur until this round of `bodyForce` 

has completed.

   * Also, the next round of `bodyForce` cannot begin until the integration 

is complete.

   */

    for (int i = 0 ; i < nBodies; i++) { // integrate position

      p[i].x += p[i].vx*dt;

      p[i].y += p[i].vy*dt;

      p[i].z += p[i].vz*dt;

    }

    const double tElapsed = GetTimer() / 1000.0;

    totalTime += tElapsed;

  }

  double avgTime = totalTime / (double)(nIters);

  float billionsOfOpsPerSecond = 1e-9 * nBodies * nBodies / avgTime;

  write_values_to_file(solution_values, buf, bytes);

  // You will likely enjoy watching this value grow as you accelerate the 

application,

  // but beware that a failure to correctly synchronize the device might 

result in

  // unrealistically high values.

  printf("%0.3f Billion Interactions / second", billionsOfOpsPerSecond);

  free(buf);

}
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