
Chips Performance (TFLOPs) Price in 2024

AMD Ryzen™ Threadripper™ PRO 7995WX 12.16 US$ 10,000

NVIDIA Tesla A100 312 US$ 18,000

Fundamentals of CUDA C/C++
Introduction
CUDA is a parallel computing platform developed by NVIDIA that allows general-purpose
computing on GPUs (GPGPU). It is widely used in the fields related to high-performance
computing, such as machine learning and computer simulation.

Typically, the parallelism and performance on GPUs are much higher than on CPUs. Let's look at
the FLOPs of some latest CPU and GPU chips. With less than double prize, NVIDIA A100 offers
nearly 26 times better performance than today's most powerful CPU.

In this article, we will discuss the basic methodology on CUDA programming.

Before You Start
NVIDIA offers a command line tool nvidia-smi (system management interface) to show the

information of the GPU installed on the computer. Don't worry if you do not have a NVIDIA GPU,
simply turn to Google Colab for a free GPU environment. The rest of the article will be done on
Google Colab.

After we connect to a GPU runtime on Colab, we can now run nvidia-smi in the interactive

environment to see the information of the GPU installed. Note that we are in a Python
environment and ! before system commands tells the environment to run it in a Linux shell.

Great! We now have a Tesla T4 GPU! Make sure you have seen similar outputs and we will now
move on to our next topic.

af://n0
af://n2
https://developer.nvidia.com/about-cuda
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/FLOPS
af://n13
https://colab.research.google.com/
af://n62

Qualifiers Meanings

__global__ The function is executed on device, called by host.

__device__ The function is executed on device, called by device.

__host__
The function is executed on host. This is the default choice when we omit the
qualifier.

CUDA Programming Basics
The prefix of a file in the CUDA language is .cu , and a CUDA file can be compiled along with

C/C++/Fortran easily with the help of CMake . However, it is not today's topic and we will simply
stop here.

Our First CUDA Program

Before we talk about CUDA, let's first look at a C program that we are already familiar with.

Straightforward, right? After rename the file as first.cu , we can compile it with CUDA compiler,

just like what we usually do with a C compiler.

nvcc is the CUDA compiler, -o specified the name of the output executable file, -run executes

the binary file right after the compilation process finishes. Now we can see the output from the
program.

The output is expected. However, it is nothing different from what we usually do in C, since what
we have written is exactly a C program. Now we will refactor the program so that it runs on GPU.
In the context of CUDA programming, CPU is usually called host and GPU device . A function that

runs on device is called kernel function. The return value of a kernel function must be void . To

enable some function to run on device, we must add some special qualifier before the function.
Here we list common qualifiers and explained their meanings.

#include <stdio.h>

void printHelloWorld() {

 printf("Hello, world!\n");

}

int main() {

 printHelloWorld();

}

1

2

3

4

5

6

7

8

9

!nvcc first.cu -o first -run1

af://n62
af://n66

In this article, tasks are assigned by the host to the device, so we will only use the __global__

qualifier and default qualifier (no qualifier).

To launch a kernel function (don't forget what is a kernel), we use triple angle brackets to specify
the configuration of the kernel function. Let's look at an example. The kernel function is defined
here,

and called here.

The configuration of the kernel will be explained later. Note that a kernel function is
asynchronous, which is to mean that the host won't wait for the kernel function to finish. Rather,
the host will continue to execute the codes below. Function cudaDeviceSynchronize() let host

wait for all the kernels to finish. Let's put it together and look at the results. The complete CUDA
program should look at this:

Now we compile and run the program

And we get the results

which shows our program are truly running on GPU!

__global__ void printHelloWorld() {

 printf("Hello, world!\n");

}

1

2

3

int main() {

 printHelloWorld<<<1, 2>>>();

}

1

2

3

#include <stdio.h>

__global__ void printHelloWorld() {

 printf("Hello, world!\n");

}

int main() {

 printHelloWorld<<<1, 2>>>();

 cudaDeviceSynchronize();

}

1

2

3

4

5

6

7

8

9

10

!nvcc first.cu -o first -run1

CUDA Thread Hierarchy

Kernel Configuration

In the past section, we haven't really talked about what does the parameters in the triple angle
brackets actually denote. Let's look at the CUDA thread hierarchy.

CUDA follows a grid-block-thread hierarchy. The overall structure is called grid, which is in black
and contains blocks. The first parameter denotes number of blocks and the second parameter
denotes threads per block. Blocks are painted blue and threads white in the slide. So, kernel
function performWork<<<2, 4>>> actually says, the host assigns work to 2 blocks, with 4 threads

each. Now you can explain why we have seen two echoes in our first CUDA program.

A thread can get its block index and thread index within the block by variables blockIdx.x

and threadIdx.x , which are available directly in the definition of a kernel function.

Let's look at an example,

which gives the output:

#include <stdio.h>

__global__ void threadInBlock() {

 printf("Thread %d from block %d\n", threadIdx.x, blockIdx.x);

}

int main() {

 threadInBlock<<<2, 4>>>();

 cudaDeviceSynchronize();

}

1

2

3

4

5

6

7

8

9

10

af://n133
af://n235

There are two more variables gridDim.x and blockDim.x , meaning the number of blocks in a

grid and the number of threads in a block respectively and corresponding to the two parameters
we passed when launched the kernel function.

You might wonder why there is a .x after each variable. The truth is that both the blocks and

threads can be place in 3 dimensions. With the help of class dim3 , we can pass a multi-

dimensional configuration into a kernel. This trick is only for convenience in some particular
applications, for example matrix operations, and would do nothing to the performance.

The hierarchy of the configuration above will look like this:

Now we can access these values with gridDim.x , gridDim.y , gridDim.z , blockDim.x ,

blockDim.y , blockDim.z() , blockIdx.x , blockIdx.y , blockIdx.z , threadIdx.x ,

threadIdx.y , threadIdx.z .

These values are important for many calculations, as we will discuss later with memory.

performWork<<<dim3(2,2,1), dim3(2,2,1)>>>();1

Streaming Multiprocessors

In the end this section, we explain streaming multiprocessors (SMs) and offer a simple rule for
picking proper numbers for numberOfBlocks and threadsPerBlock .

SMs are basic units that execute tasks. As shown in the figure above, blocks are scheduled to run
on SMs. When the number of blocks is multiple of the number of SMs, the execution will be
efficient. Therefore, we cannot hardcode numberOfBlocks and may use an API to get a value for a
particular machine instead. Usually, taking numberOfBlocks as numberOfSMs times , , or

would be a good choice.

As for threadsPerBlock , it can be any integer between and . usually becomes a good

choice.

Here is an example that we call a CUDA API to get the number of SMs. The official reference for
struct cudaDeviceProp is here.

Then, we can create a kernel configuration like this

int deviceId;

cudaGetDevice(&deviceId);

cudaDeviceProp prop;

cudaGetDeviceProperties(&prop, deviceId);

int numberOfSMs = prop.multiProcessorCount;

1

2

3

4

5

6

7

int numberOfBlocks = numberOfSMs * 32;

int threadsPerBlock = 512;

some_kernel<<<numberOfBlocks, threadsPerBlock>>>();

1

2

3

af://n238
https://docs.nvidia.com/cuda/cuda-runtime-api/structcudaDeviceProp.html

CUDA Streams

GPU tasks are scheduled in streams and the kernels in one stream is serial. Before, we didn't
specify the stream and the kernels are executed in the default stream. Default streaming is
blocking. That is to mean, when there is a task scheduled in the default stream, all the tasks on
the non-default streams will be blocked, while all the other non-default streams are non-
blocking, allowing concurrent kernel execution. CUDA offers a stream class cudaStream_t and
they are created with cudaStreamCreate() and destroyed with cudaStreamDestroy() . As we

didn't mention before, a kernel configuration actually accepts 4 parameters, numberOfBlocks ,

threadsPerBlock , sharedMemoryBytes , and stream . We just left the latter 2 parameter in

defaults before. Here is an example with concurrent streams.

In this part of program, the kernels in stream1 and stream2 will be concurrent. Since we don't
need shared memory here, we just left them in 0. Note that although cudaStreamDestroy()

returns immediately after calling, the streams are not actually destroyed until the kernels in the
stream finish, so we don't need to worry about the side effect of destroying a stream.

CUDA Memory Management
So far, we have discussed how to launch a kernel running on device. However, such kernels could
only access memory automatically allocated. That is, local variables in kernel function definition.
We wish to allocate memory that can be accessed by both the host and the device. CUDA offers a
unified memory model so that we don't need to worry about memory access.

cudaStream_t stream1;

cudaStream_t stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

some_kernel<<<numberOfBlocks, threadsPerblock, 0, stream1>>>();

some_kernel<<<numberOfBlocks, threadsPerblock, 0, stream2>>>();

cudaStreamDestroy(stream1);

cudaStreamDestroy(stream2);

1

2

3

4

5

6

7

8

9

10

af://n256
af://n307

Unified Memory

Allocation and Freeing

To allocate unified memory that can be accessed both on the device and the host, we call
cudaMallocManaged() function.

Thus, the integer array can be accessed both on the device and the host. To free allocated unified
memory, we call cudaFree() utility.

Reduce Page Faults

When UM was initially allocated, it may not be resident on CPU or GPU. If the memory was first
initialized by CPU then GPU, a page fault occurs. Memory will be transferred from host to device
and slow down the tasks. Similarly, if UM was initialized on GPU and then accessed by CPU, a page
fault occurs and memory transfer begins. The place memory is resident on depends on the last
access. When a page fault is present, memory is transferred is small batch size. If we can predict a
page fault, we can transfer the corresponding memory in advance with bigger batch size to
increase the efficiency. CUDA offers an API called cudaPrefetch to perform such behaviors. Here

is an example.

int N = 2<<20;

int* array;

int size = N * sizeof(int);

cudaMallocManaged(&array, size);

1

2

3

4

cudaFree(array);1

int deviceId;

cudaGetDevice(&deviceId);

// Allocate unified memory

int numberOfSMs = prop.multiProcessorCount;

int N = 2<<20;

int* array;

1

2

3

4

5

6

7

af://n264
af://n276
af://n274
https://en.wikipedia.org/wiki/Page_fault

The third parameter of cudaPrefetchAsync specifies the direction of memory transfer. When
filled with deviceId , the memory is transferred from host to device (HtoD), while

cudaCpuDeviceId specifies a transfer from device to host (DtoH). Note that the variable

cudaCpuDeviceId can directly be accessed globally and we need no APIs to get this variable.

Index Calculation

With unified memory, we can finally schedule some tasks on GPU. Let's look at an example.
Suppose we have two vectors containing integers, each with length 2^22, and we want to
accelerate vector addition with CUDA. Our number of threads might no be bigger enough to
establish a bijection between thread indices and vector indices, so a thread must execute more
than one addition. The convention is to define a variable stride that equals to the total number

of threads in a (also the only) grid, and increase the loop index by stride each time. We assume

the kernel configuration is 1-d and here is how we calculate index. Note that we are checking index
boundary each time to avoid unexpected memory access.

Manual Memory Management and Streaming

Basic Commands

Although UM is powerful enough, we may still want to manage the memory ourselves to further
optimize the efficiency. Here are some commands for manually managing the memory.

cudaMalloc will allocate the memory on GPU. The memory is not accessible on CPU.

cudaFree frees the memory allocated on device.

cudaMallocHost will allocate the memory on CPU just like what a normal malloc does. The

memory will be page locked on host. Too many page locked memory would reduce CPU
performance.

cudaFreeHost frees the memory allocated on host.

cudaMemcpy copies the memory DtoH or HtoD, instead of transferring.

int size = N * sizeof(int);

cudaMallocManaged(&array, size);

// Initialize the UM on CPU, then access it on GPU

init_on_cpu(array, size);

cudaPrefetchAsync(array, size, deviceId); // Trasfer the memory from host to

device

access_memory<<<numberOfBlocks, threadsPerBlock>>>();

cudaDeviceSynchronize();

// Free memory

cudaFree(array);

8

9

10

11

12

13

14

15

16

17

18

__global__ void vectorAdd(int* a, int* b, int* res, int N) {

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 int stride = gridDim.x * blockDim.x;

 for (int i = idx; i < N; i += stride) {

 res[i] = a[i] + b[i];

 }

}

1

2

3

4

5

6

7

af://n291
af://n300
af://n360

cudaMemcpyAsync allows asynchronously memory copying (explained later).

Let's look at an example.

Note that cudaMemcpy first accepts the destination pointer then source pointer, unlike Linux cp

first-source-then-destination convention. cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice are two variables that can be directly and globally accessed that specify

the direction of memory copying.

Asynchronous Memory Copying

In the last example, memory copy starts after kernel finishes. To optimize the process, we can start
asynchronous (or concurrent) memory copying right after a part of kernel finishes.

An simple approach is to divide the kernel in several segments. A segment of memory copying
starts right after a segment of kernel finishes. We will refactor the former vector addition program
and take it as an example.

int N = 2<<20;

int size = N * sizeof(int);

int* array_device;

int* array_host;

cudaMalloc(&array_device, size);

cudaMallocHost(&array_host, size);

init_on_cpu(array_host, N);

cudaMemcpy(array_device, array_host, size, cudaMemcpyHostToDevice);

some_kernel<<<blocks, threads, 0, stream>>>();

cudaMemcpy(array_host, array_device, size, cudaMemcpyDeviceToHost);

cudaFree(array_device);

cudaFreeHost(array_host);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// Perform vector addition in segments

 int numberOfSegments = 4;

 int segmentN = N / numberOfSegments;

1

2

3

af://n362

The piece of program above divides the kernel vectorAdd in 4 segments. After one segment of

kernel finishes, asynchronous memory copying starts. Every stream first executes the kernel then
copying the corresponding memory to the host. Note that we must carefully handle all the indices
here to avoid illegal memory access. After all of theses are done, the stream is destroyed (recall
stream destruction behavior). The whole accelerated program is pasted below for your reference.
Don't forget to destroy unused streams and free unused memories.

 int segmentSize = size / numberOfSegments;

 for (int i = 0; i < numberOfSegments; i++) {

 cudaStream_t stream;

 cudaStreamCreate(&stream);

 int offset = i * segmentN;

 vectorAdd<<<blocks, threads, 0, stream1>>>(a_device + offset, b_device +

offset,

 c_device + offset, segmentN);

 cudaMemcpyAsync(c_host + offset, c_device + offset, segmentSize,

cudaMemcpyDeviceToHost, stream);

 cudaStreamDestroy(stream);

 }

 cudaDeviceSynchronize();

4

5

6

7

8

9

10

11

12

13

14

#include <stdio.h>

__global__ void init_on_gpu(int* a, int init_val, int N) {

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 int stride = gridDim.x * blockDim.x;

 for (int i = idx; i < N; i += stride) {

 a[i] = init_val;

 }

}

__global__ void vectorAdd(int* a, int* b, int* res, int N) {

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 int stride = gridDim.x * blockDim.x;

 for (int i = idx; i < N; i += stride) {

 res[i] = a[i] + b[i];

 }

}

int verify_on_cpu(int* a, int res, int N) {

 for (int i = 0; i < N; i++) {

 if (a[i] != res) {

 return 0;

 }

 }

 return 1;

}

int main() {

 // Variable declarations

 int N = 2<<20;

 int size = N * sizeof(int);

 int* a_device;

 int* b_device;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 int* c_device;

 int* c_host;

 cudaMalloc(&a_device, size);

 cudaMalloc(&b_device, size);

 cudaMalloc(&c_device, size);

 cudaMallocHost(&c_host, size);

 // Kernel configuration

 int deviceId;

 cudaGetDevice(&deviceId);

 cudaDeviceProp prop;

 cudaGetDeviceProperties(&prop, deviceId);

 int SMs = prop.multiProcessorCount;

 int blocks = SMs * 32;

 int threads = 512;

 // Stream creation

 cudaStream_t stream1;

 cudaStream_t stream2;

 cudaStream_t stream3;

 cudaStreamCreate(&stream1);

 cudaStreamCreate(&stream2);

 cudaStreamCreate(&stream3);

 // Initialize arrays on device

 init_on_gpu<<<blocks, threads, 0, stream1>>>(a_device, 2, N);

 init_on_gpu<<<blocks, threads, 0, stream2>>>(b_device, 3, N);

 init_on_gpu<<<blocks, threads, 0, stream3>>>(c_device, 0, N);

 cudaDeviceSynchronize();

 // Perform vector addition in segments

 int numberOfSegments = 4;

 int segmentN = N / numberOfSegments;

 int segmentSize = size / numberOfSegments;

 for (int i = 0; i < numberOfSegments; i++) {

 cudaStream_t stream;

 cudaStreamCreate(&stream);

 int offset = i * segmentN;

 vectorAdd<<<blocks, threads, 0, stream1>>>(a_device + offset, b_device +

offset, c_device + offset, segmentN);

 cudaMemcpyAsync(c_host + offset, c_device + offset, segmentSize,

cudaMemcpyDeviceToHost, stream);

 cudaStreamDestroy(stream);

 }

 cudaDeviceSynchronize();

 // Verify results

 if (verify_on_cpu(c_host, 5, N)) {

 printf("Results are correct!\n");

 } else {

 printf("Results are incorrect!\n");

 }

 // Free memories

 cudaFree(a_device);

 cudaFree(b_device);

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Error Handling
CUDA usually does not report runtime errors, so we must detect and record them manually. CUDA
offers a class cudaError_t to handle errors. The return values of CUDA APIs are cudaError_t ,

allowing us to catch error directly.

This program will throw an error because is not a valid size.

However, the return values of custom kernels are void , meaning we cannot catch error in the

same way when launching those kernels. CUDA offers cudaGetLastError to catch the last error
thrown. Also, we can create a utility function to encapsulate such processes.

Therefore, we can check the errors when launching kernels.

which yields

Such error handling may help debug the CUDA program.

 cudaFree(c_device);

 cudaFreeHost(c_host);

}

88

89

90

#include <stdio.h>

int main() {

 int* array;

 int size = -1;

 cudaError_t err;

 err = cudaMallocManaged(&array, size);

 if (err != cudaSuccess) {

 fprintf(stderr, "Error: %s\n", cudaGetErrorString(err));

 }

}

1

2

3

4

5

6

7

8

9

10

Error: out of memory1

inline void checkCudaError() {

 cudaError_t err;

 err = cudaGetLastError();

 if (err != cudaSuccess) {

 fprintf(stderr, "Error: %s\n", cudaGetErrorString(err));

 assert(err == cudaSuccess);

 }

}

1

2

3

4

5

6

7

8

some_kernel<<<-1, -1>>>();

checkCudaError();

1

2

Error: invalid configuration argument1

af://n372
af://n410

Performance Profiling
NVIDIA Nsight Systems command line tool (nsys) is a command line profiler that will gather
following information:

Profile configuration details

Report file(s) generation details

CUDA API Statistics

CUDA Kernel Statistics

CUDA Memory Operation Statistics (time and size)

OS Runtime API Statistics

To install nsys in Colab, run the following commands:

Then, we can profile the running information of our CUDA program. Here we take vector addition
as an example. profile means we want to profile the executable and --stats=true tells nsys

to print all the information.

A part of printed information is pasted below:

Here we can trace the running time of kernels and the memory behavior. You can compare the
results of different numberOfBlocks and see what kind of memcpy page faults will bring about.

!wget

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/nsi

ght-systems-2023.2.3_2023.2.3.1001-1_amd64.deb

!apt update

!apt install ./nsight-systems-2023.2.3_2023.2.3.1001-1_amd64.deb

!apt --fix-broken install

1

2

3

4

!nsys profile --stats=true vector-add1

af://n410
af://n452

Final Exercise
 An n-body simulator predicts the individual motions of a group of objects interacting with each
other gravitationally. Below is a simple, though working, n-body simulator for bodies moving
through 3 dimensional space.

In its current CPU-only form, this application takes about 5 seconds to run on 4096 particles, and
20 minutes to run on 65536 particles. Your task is to GPU accelerate the program, retaining the
correctness of the simulation.

Considerations to Guide Your Work

Here are some things to consider before beginning your work:

Especially for your first refactors, the logic of the application, the bodyForce function in

particular, can and should remain largely unchanged: focus on accelerating it as easily as
possible.

The code base contains a for-loop inside main for integrating the interbody forces calculated

by bodyForce into the positions of the bodies in the system. This integration both needs to
occur after bodyForce runs, and, needs to complete before the next call to bodyForce . Keep

this in mind when choosing how and where to parallelize.

Use a profile driven and iterative approach.

You are not required to add error handling to your code, but you might find it helpful, as you
are responsible for your code working correctly.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "timer.h"

#include "files.h"

#define SOFTENING 1e-9f

/*

 * Each body contains x, y, and z coordinate positions,

 * as well as velocities in the x, y, and z directions.

 */

typedef struct { float x, y, z, vx, vy, vz; } Body;

/*

 * Calculate the gravitational impact of all bodies in the system

 * on all others.

 */

void bodyForce(Body *p, float dt, int n) {

 for (int i = 0; i < n; ++i) {

 float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;

 for (int j = 0; j < n; j++) {

 float dx = p[j].x - p[i].x;

 float dy = p[j].y - p[i].y;

 float dz = p[j].z - p[i].z;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

af://n452
https://en.wikipedia.org/wiki/N-body_problem
af://n461

 float distSqr = dx*dx + dy*dy + dz*dz + SOFTENING;

 float invDist = rsqrtf(distSqr);

 float invDist3 = invDist * invDist * invDist;

 Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;

 }

 p[i].vx += dt*Fx; p[i].vy += dt*Fy; p[i].vz += dt*Fz;

 }

}

int main(const int argc, const char** argv) {

 // The assessment will test against both 2<11 and 2<15.

 // Feel free to pass the command line argument 15 when you generate

./nbody report files

 int nBodies = 2<<11;

 if (argc > 1) nBodies = 2<<atoi(argv[1]);

 // The assessment will pass hidden initialized values to check for

correctness.

 // You should not make changes to these files, or else the assessment

will not work.

 const char * initialized_values;

 const char * solution_values;

 if (nBodies == 2<<11) {

 initialized_values = "files/initialized_4096";

 solution_values = "files/solution_4096";

 } else { // nBodies == 2<<15

 initialized_values = "files/initialized_65536";

 solution_values = "files/solution_65536";

 }

 if (argc > 2) initialized_values = argv[2];

 if (argc > 3) solution_values = argv[3];

 const float dt = 0.01f; // Time step

 const int nIters = 10; // Simulation iterations

 int bytes = nBodies * sizeof(Body);

 float *buf;

 buf = (float *)malloc(bytes);

 Body *p = (Body*)buf;

 read_values_from_file(initialized_values, buf, bytes);

 double totalTime = 0.0;

 /*

 * This simulation will run for 10 cycles of time, calculating

gravitational

 * interaction amongst bodies, and adjusting their positions to reflect.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

 */

 for (int iter = 0; iter < nIters; iter++) {

 StartTimer();

 /*

 * You will likely wish to refactor the work being done in `bodyForce`,

 * and potentially the work to integrate the positions.

 */

 bodyForce(p, dt, nBodies); // compute interbody forces

 /*

 * This position integration cannot occur until this round of `bodyForce`

has completed.

 * Also, the next round of `bodyForce` cannot begin until the integration

is complete.

 */

 for (int i = 0 ; i < nBodies; i++) { // integrate position

 p[i].x += p[i].vx*dt;

 p[i].y += p[i].vy*dt;

 p[i].z += p[i].vz*dt;

 }

 const double tElapsed = GetTimer() / 1000.0;

 totalTime += tElapsed;

 }

 double avgTime = totalTime / (double)(nIters);

 float billionsOfOpsPerSecond = 1e-9 * nBodies * nBodies / avgTime;

 write_values_to_file(solution_values, buf, bytes);

 // You will likely enjoy watching this value grow as you accelerate the

application,

 // but beware that a failure to correctly synchronize the device might

result in

 // unrealistically high values.

 printf("%0.3f Billion Interactions / second", billionsOfOpsPerSecond);

 free(buf);

}

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

	Fundamentals of CUDA C/C++
	Introduction
	Before You Start
	CUDA Programming Basics
	Our First CUDA Program
	CUDA Thread Hierarchy
	Kernel Configuration
	Streaming Multiprocessors
	CUDA Streams

	CUDA Memory Management
	Unified Memory
	Allocation and Freeing
	Reduce Page Faults
	Index Calculation

	Manual Memory Management and Streaming
	Basic Commands
	Asynchronous Memory Copying

	Error Handling
	Performance Profiling
	Final Exercise
	Considerations to Guide Your Work

